This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A190952 #16 Jun 29 2016 01:52:16 %S A190952 4,8,12,16,21,26,30,35,40,45,51,56,61,67,72,78,84,89,95,101,107,113, %T A190952 119,125,131,137,144,150,156,163,169,175,182,188,195,201,208,214,221, %U A190952 228,234,241,248,254,261,268,275,282,288,295,302,309,316,323,330,337,344,351 %N A190952 Largest integer k for which exp(k) < k^n, n>=3. %C A190952 n=3 is the starting index because exp(x)>x^n for all x>=0 when n=1,2. %C A190952 Conjecture: There are floor((n+1)/log(n+1))-2 terms less than or equal to n. - _Benedict W. J. Irwin_, Jun 15 2016 %F A190952 Conjecture: G.f.: Sum_{ j>=1 } (Sum_{ k>=1 } x^(j+floor((k+1)/log(k+1)))) + x^j. - _Benedict W. J. Irwin_, Jun 15 2016 %F A190952 a(n) = floor(-n*LambertW(-1,-1/n)). - _Vaclav Kotesovec_, Jun 29 2016 %t A190952 a[n_] := Floor[E^-ProductLog[-1, -1/n]]; Table[a[n], {n, 3, 60}] %Y A190952 Cf. A088346 (Smallest integer k where exp(x)>x^n for all x>=k) %Y A190952 Cf. A190951 (Closest integer to the largest real x such that exp(x) = x^n) %K A190952 nonn %O A190952 3,1 %A A190952 _Shel Kaphan_, May 24 2011