cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190987 a(n) = 10*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.

This page as a plain text file.
%I A190987 #42 Dec 23 2023 09:45:12
%S A190987 0,1,10,95,900,8525,80750,764875,7245000,68625625,650031250,
%T A190987 6157184375,58321687500,552430953125,5232701093750,49564856171875,
%U A190987 469485056250000,4447026281640625,42122837535156250,398993243943359375,3779318251757812500,35798216297861328125
%N A190987 a(n) = 10*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.
%H A190987 G. C. Greubel, <a href="/A190987/b190987.txt">Table of n, a(n) for n = 0..1000</a>
%H A190987 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-5).
%F A190987 G.f.: x/(1 - 10*x + 5*x^2). - _Philippe Deléham_, Oct 12 2011
%F A190987 E.g.f.: (1/(2*sqrt(5)))*exp(5*x)*sinh(2*sqrt(5)*x). - _G. C. Greubel_, Sep 07 2022
%t A190987 LinearRecurrence[{10,-5}, {0,1}, 50]
%o A190987 (Magma) [Round(5^((n-1)/2)*Evaluate(ChebyshevU(n), Sqrt(5))): n in [0..30]]; // _G. C. Greubel_, Sep 07 2022
%o A190987 (SageMath)
%o A190987 A190987 = BinaryRecurrenceSequence(10, -5, 0, 1)
%o A190987 [A190987(n) for n in (0..30)] # _G. C. Greubel_, Sep 07 2022
%Y A190987 Cf. A190958 (index to generalized Fibonacci sequences).
%Y A190987 Cf. A019934 (sqrt(5-2*sqrt(5))), A019952 (sqrt(5+2*sqrt(5))).
%K A190987 nonn,easy
%O A190987 0,3
%A A190987 _Vladimir Joseph Stephan Orlovsky_, May 24 2011