cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190988 a(n) = 10*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.

This page as a plain text file.
%I A190988 #27 Dec 23 2023 09:45:08
%S A190988 0,1,10,94,880,8236,77080,721384,6751360,63185296,591344800,
%T A190988 5534336224,51795293440,484746917056,4536697409920,42458492596864,
%U A190988 397364741509120,3718896459510016,34804776146045440,325734382703394304,3048515170157670400,28530745405356338176
%N A190988 a(n) = 10*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.
%H A190988 G. C. Greubel, <a href="/A190988/b190988.txt">Table of n, a(n) for n = 0..1000</a>
%H A190988 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-6).
%F A190988 G.f.: x/(1-10*x+6*x^2). - _Philippe Deléham_, Oct 12 2011
%F A190988 From _G. C. Greubel_, Sep 15 2022: (Start)
%F A190988 a(n) = 6^((n-1)/2) * ChebyshevU(n-1, 5/sqrt(6)).
%F A190988 E.g.f.: (1/sqrt(19))*exp(5*x)*sinh(sqrt(19)*x). (End)
%t A190988 LinearRecurrence[{10,-6}, {0,1}, 50]
%o A190988 (Magma) [Round(6^((n-1)/2)*Evaluate(ChebyshevU(n), 5/Sqrt(6))): n in [0..30]]; // _G. C. Greubel_, Sep 15 2022
%o A190988 (SageMath)
%o A190988 A190988 = BinaryRecurrenceSequence(10, -6, 0, 1)
%o A190988 [A190988(n) for n in (0..30)] # _G. C. Greubel_, Sep 15 2022
%Y A190988 Cf. A190958 (index to generalized Fibonacci sequences).
%K A190988 nonn
%O A190988 0,3
%A A190988 _Vladimir Joseph Stephan Orlovsky_, May 24 2011