cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A190990 a(n) = 10*a(n-1) - 8*a(n-2), with a(0)=0, a(1)=1.

This page as a plain text file.
%I A190990 #19 Dec 23 2023 09:45:02
%S A190990 0,1,10,92,840,7664,69920,637888,5819520,53092096,484364800,
%T A190990 4418911232,40314193920,367790649344,3355392942080,30611604226048,
%U A190990 279272898723840,2547836153430016,23244178344509440,212059094217654272,1934637515420467200,17649902400463437824
%N A190990 a(n) = 10*a(n-1) - 8*a(n-2), with a(0)=0, a(1)=1.
%H A190990 G. C. Greubel, <a href="/A190990/b190990.txt">Table of n, a(n) for n = 0..1000</a>
%H A190990 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-8).
%F A190990 G.f.: x  / ( 1-10*x+8*x^2 ). - _R. J. Mathar_, May 26 2011
%F A190990 E.g.f.: (1/sqrt(17))*exp(5*x)*sinh(sqrt(17)*x). - _G. C. Greubel_, Sep 15 2022
%t A190990 LinearRecurrence[{10,-8}, {0,1}, 50]
%o A190990 (Magma) [Round(2^(3*(n-1)/2)*Evaluate(ChebyshevU(n), 5/(2*Sqrt(2)))): n in [0..30]]; // _G. C. Greubel_, Sep 15 2022
%o A190990 (SageMath)
%o A190990 A190990 = BinaryRecurrenceSequence(10, -8, 0, 1)
%o A190990 [A190990(n) for n in (0..30)] # _G. C. Greubel_, Sep 15 2022
%Y A190990 Cf. A190958 (index to generalized Fibonacci sequences)
%K A190990 nonn
%O A190990 0,3
%A A190990 _Vladimir Joseph Stephan Orlovsky_, May 24 2011