This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191003 #11 May 28 2014 15:33:03 %S A191003 1,1,-11,-83,6921,60281,-29132611,208438245,427918448785, %T A191003 -22588439158415,-15853957892902395,2325342085659612317, %U A191003 1210510298677225936025,-389238357419648883489303,-164119044571112073285613619 %N A191003 E.g.f. arctan(x/cos(x)) (odd powers only). %F A191003 a(n)=(2*n+1)!*(2*sum(m=0..n-1, ((-1)^(m)*sum(j=0..(n-m), binomial(m+j-1/2,j)*4^(n-m-j)*sum(i=0..j, (i-j)^(2*n-2*m)*binomial(2*j,i)*(-1)^(n-m+j-i))))/((2*m+1)*(2*n+1-2*m-1)!))+(-1)^(n)/(2*n+1)). %e A191003 arctan(x/cos(x)) = x + 1/6*x^3 - 11/120*x^5 - 83/5040*x^7 +- ... %t A191003 With[{nn=30},Take[CoefficientList[Series[ArcTan[x/Cos[x]],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* _Harvey P. Dale_, May 28 2014 *) %o A191003 (Maxima) %o A191003 a(n):=(2*n+1)!*(2*sum(((-1)^(m)*sum(binomial(m+j-1/2,j)*4^(n-m-j)*sum((i-j)^(2*n-2*m)*binomial(2*j,i)*(-1)^(n-m+j-i),i,0,j),j,0,(n-m)))/((2*m+1)*(2*n+1-2*m-1)!),m,0,n-1)+(-1)^(n)/(2*n+1)); %K A191003 sign %O A191003 0,3 %A A191003 _Vladimir Kruchinin_, Jun 16 2011