cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191004 Number of ways to write n = p+q+(n mod 2)q, where p is an odd prime and q<=n/2 is a prime such that JacobiSymbol[q,n]=1 if n is odd, and JacobiSymbol[(q+1)/2,n+1]=1 if n is even.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 3, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 2, 4, 3, 5, 4, 1, 4, 1, 2, 3, 2, 2, 2, 3, 1, 4, 1, 2, 4, 2, 2, 3, 1, 2, 4, 5, 3, 3, 1, 4, 3, 2, 3, 5, 3, 4, 8, 2, 2, 7, 4, 4, 5, 2, 2, 6, 3, 3, 4, 4, 2, 4, 2, 1, 4, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 30 2012

Keywords

Comments

Conjecture: a(n)>0 for all n>5.
We have verified this for n up to 10^9. It is stronger than Goldbach's conjecture and Lemoine's conjecture.
Zhi-Wei Sun also conjectured the following refinement: Any odd number 2n+1>64 not among 105, 247, 255, 1105 can be written as p+2q, where p and q are primes, and JacobiSymbol[q,p']=1 for any prime divisor p' of 2n+1; also, any even number 2n>8 not among 32 and 152 can be written as p+q, where p and q<=n/2 are primes, and JacobiSymbol[(q+1)/2,p']=1 for any prime divisor p' of 2n+1.

Examples

			a(19)=1 since 19=5+2*7 with JacobiSymbol[7,19]=1.
a(32)=1 since 32=29+3 with JacobiSymbol[(3+1)/2,32+1]=1.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[(Mod[n,2]==1&&PrimeQ[n-2Prime[k]]==True&&JacobiSymbol[Prime[k],n]==1)||(Mod[n,2]==0&&n-Prime[k]>2&&PrimeQ[n-Prime[k]]==True&&JacobiSymbol[(Prime[k]+1)/2,n+1]==1),1,0],{k,1,PrimePi[n/2]}]
    Do[Print[n," ",a[n]],{n,1,200}]