This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191007 #36 Feb 11 2024 19:17:47 %S A191007 3,9,27,69,171,405,939,2133,4779,10581,23211,50517,109227,234837, %T A191007 502443,1070421,2271915,4805973,10136235,21321045,44739243,93672789, %U A191007 195734187,408245589,850045611,1767200085,3668617899,7605671253,15748213419,32570168661,67287820971 %N A191007 a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3. %C A191007 Another renewal type of sequence: Let X, X(1),X(2),... denote independent random variables with pdf P(X=1) = P(X=2) = P(X=4) = 1/3. Let N(x) denote the first value of k such that X(1)*X(2)...*X(k) > x, and let H(x) = E(N(x)). The sequence a(n) is given by a(n) = 2^(n+1)*H(2^n). %H A191007 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-4). %F A191007 a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3. %F A191007 a(n) = 3 * A045883(n+1). %F A191007 G.f.: 3/((1 + x)*(1 - 2*x)^2). [_Bruno Berselli_, Oct 16 2014] %t A191007 Table[n 2^(n + 1) + (2^(n + 3) + (-1)^n)/3, {n, 0, 70}] (* _Vincenzo Librandi_, Oct 16 2014 *) %t A191007 LinearRecurrence[{3,0,-4},{3,9,27},40] (* _Harvey P. Dale_, Feb 11 2024 *) %o A191007 (PARI) a(n) = n*2^(n+1) + (2^(n+3)+(-1)^n)/3; \\ _Michel Marcus_, Oct 16 2014 %o A191007 (Magma) [n*2^(n+1)+(2^(n+3)+(-1)^n)/3: n in [0..30]]; // _Vincenzo Librandi_, Oct 16 2014 %Y A191007 3 times A045883. %K A191007 nonn,easy,less %O A191007 0,1 %A A191007 _Edward Omey_, Jun 16 2011 %E A191007 Formula corrected and more terms from _Michel Marcus_, Oct 16 2014