cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A191016 Number of projective reflection products on a set with n elements.

Original entry on oeis.org

1, 1, 2, 8, 38, 238, 1558, 10966, 106334, 1050974, 10295324, 114643744, 1426970188, 19128627772, 301484330492, 4785515966492, 75490216911932, 1287754035291964, 23735661951947896, 462001846720538656, 9472366452963142856, 202869898263715663016, 4536294970208910412232, 107194755891965843670088, 2634562640821884269137768
Offset: 1

Views

Author

Matthew J. Samuel, May 24 2011

Keywords

Comments

A projective reflection product is a product (usually nonassociative) satisfying (1) x*x=x, (2) x*(x*y)=y, and (3) x*(y*z)=(x*y)*(x*z) for all x,y,z.

Examples

			For n=1, the a(1)=1 product is simply x*x=x. For n=2, the a(2)=1 product on {x,y} is (x*x=x, y*y=y, x*y=y, y*x=x). For n=3, the a(3)=2 products are (x*y=y for all x,y) and (x*x=x, y*y=y, z*z=z, x*y=y*x=z, x*z=z*x=y, y*z=z*y=x).
		

Crossrefs

The sequence A191015 gives the number of isomorphism classes of such products.

Programs

  • Maple
    #the number of irreducible projective reflection products
    irredprod:=proc(n) local c, v:
        if n=1 then
            RETURN(1):
        elif n=0 or n=2 then
            RETURN(0):
        end:
        c:=0:
    #dihedral
        c:=c+(n!/(2*n)):
        if n=36 then #E6
            c:=c+(n!/((2^7*3^4*5)/2)*2):
        elif n=120 then #E8
            c:=c+(n!/((2^(14)*3^5*5^2*7)/2)):
        elif n=63 then #E7
            c:=c+(n!/(((2^(10)*3^4*5*7)/2))):
        elif n=24 then #F4
            c:=c+(n!/((1152/2)*2)):
        elif n=15 then #H3
            c:=c+(n!/(120/2)):
        elif n=60 then #H4
            c:=c+(n!/(14400/2)):
        elif n=12 then #D4
            c:=c+(n!/((2^(4-1)*4!/2)*6)):
        end:
        if n>4 and type(sqrt(n), 'integer') then #type B
            c:=c+(n!/((2^(sqrt(n))*(sqrt(n)!))/2)):
        elif n>3 and type(1/2+1/2*sqrt(1+8*n), 'integer') then #type A
            c:=c+(n!/(((1/2+(1/2)*sqrt(1+8*n))!/2)*2)):
        elif n>12 and type(1/2+1/2*sqrt(1+4*n), 'integer') then #type D
            v:=1/2+1/2*sqrt(1+4*n):
            c:=c+(n!/((2^(v-1)*v!/2)*2)):
        end:
        c:
    end:
    #convolve the sequences
    convol:=proc(n, k) local i: option remember:
        if k=1 then
            RETURN(irredprod(n)):
        end:
        add(binomial(n, i)*irredprod(i)*convol(n-i, k-1), i=0..n):
    end:
    #add the convolutions
    numprods:=proc(n) local k:
        add(convol(n, k)/k!, k=1..n):
    end:
    seq(numprods(n), n=1..30);

Formula

A projective reflection product on a set S is irreducible if S cannot be written as the disjoint union of two nonempty subsets X and Y such that x*y=y and y*x=x for all x in X and y in Y.
Define i(0)=0 and let i(p) for p>1 be the number of irreducible projective reflection products on a set with p elements. Define c(p,1)=i(p) and recursively define c(p,q)=sum(k=0 to p) of binomial(p,k)*i(k)*c(p-k,q-1). Then a(n)=sum(k=1 to n) of c(n,k)/k!.
This is a sequence of binomial type, also equal to the sum over all partitions of the set of the product of the numbers of irreducible products on the subsets in the partition.
Showing 1-1 of 1 results.