cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191019 Rational primes that decompose in the quadratic field Q(sqrt(-19)).

This page as a plain text file.
%I A191019 #20 May 22 2022 09:49:28
%S A191019 5,7,11,17,23,43,47,61,73,83,101,131,137,139,149,157,163,191,197,199,
%T A191019 229,233,239,251,263,271,277,283,311,313,347,349,353,359,367,389,397,
%U A191019 419,443,457,461,463,467,479,491,499,503,541,557,571,577,587,593,613
%N A191019 Rational primes that decompose in the quadratic field Q(sqrt(-19)).
%C A191019 Primes which are 1, 5, 7, 9, 11, 17, 23, 25, or 35 mod 38. - _Charles R Greathouse IV_, Mar 18 2018
%H A191019 Vincenzo Librandi, <a href="/A191019/b191019.txt">Table of n, a(n) for n = 1..1000</a>
%H A191019 <a href="https://oeis.org/index/Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a>
%F A191019 a(n) ~ 2n log n. - _Charles R Greathouse IV_, Mar 18 2018
%t A191019 Select[Prime[Range[200]], JacobiSymbol[#,19]==1&]
%o A191019 (Magma) [p: p in PrimesUpTo(613) | IsOne(JacobiSymbol(p, 19))]; // _Bruno Berselli_, Sep 10 2012
%o A191019 (PARI) list(lim)=my(v=List()); forprime(p=5,lim, if(kronecker(-19,p)==1, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Mar 18 2018
%K A191019 nonn,easy
%O A191019 1,1
%A A191019 _T. D. Noe_, May 24 2011
%E A191019 Definition corrected by _N. J. A. Sloane_, Dec 25 2017