This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191059 #31 Oct 23 2024 20:27:17 %S A191059 13,17,19,23,37,41,43,47,61,67,71,89,109,113,137,139,157,163,167,181, %T A191059 191,211,229,233,239,257,263,277,281,283,307,311,331,349,353,359,373, %U A191059 379,383,397,401,421,431,449,479,499,503,521,523,541,547,569,571,593 %N A191059 Primes p that have Kronecker symbol (p|6) = -1. %C A191059 Inert rational primes in the field Q(sqrt(-6)). - _N. J. A. Sloane_, Dec 26 2017 %C A191059 Appears to be the primes p such that (p mod 6)*(Fibonacci(p) mod 6) = 5. - _Gary Detlefs_, May 26 2014 %C A191059 Originally erroneously named "Primes that are not squares mod 6". - _M. F. Hasler_, Jan 18 2016 %C A191059 From _Jianing Song_, Oct 23 2024: (Start) %C A191059 Primes p such that the Legendre symbol (-6/p) = -1, i.e., -6 is not a square modulo p. %C A191059 Primes congruent to {13, 17, 19, 23} module 24. (End) %H A191059 Vincenzo Librandi, <a href="/A191059/b191059.txt">Table of n, a(n) for n = 1..1000</a> %H A191059 <a href="https://oeis.org/index/Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a> %t A191059 Select[Prime[Range[200]], JacobiSymbol[#,6]==-1&] %o A191059 (Magma) [p: p in PrimesUpTo(593) | KroneckerSymbol(p, 6) eq -1]; // _Vincenzo Librandi_, Sep 11 2012 %o A191059 (PARI) is(n)=isprime(n) && kronecker(n,6)<0 \\ _Charles R Greathouse IV_, Feb 23 2017 %Y A191059 Cf. A157437. %K A191059 nonn,easy %O A191059 1,1 %A A191059 _T. D. Noe_, May 25 2011 %E A191059 Definition corrected, following a suggestion from _David Broadhurst_, by _M. F. Hasler_, Jan 18 2016