This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191063 #23 Jun 29 2025 13:17:29 %S A191063 2,3,13,29,31,37,41,53,59,67,71,79,89,97,103,107,109,113,127,151,167, %T A191063 173,179,181,193,211,223,227,241,257,269,281,293,307,317,331,337,373, %U A191063 379,383,401,409,421,431,433,439,449,487,509,521,523,547,563,569,599 %N A191063 Primes that are not squares mod 19. %C A191063 Inert rational primes in the field Q(sqrt(-19)). - _N. J. A. Sloane_, Dec 25 2017 [Corrected by _Jianing Song_, Dec 24 2018] %C A191063 Primes p such that p^9 == -1 (mod 19). Primes congruent to {2, 3, 8, 10, 12, 13, 14, 15, 18} modulo 19. - _Jianing Song_, Dec 24 2018 %H A191063 Vincenzo Librandi, <a href="/A191063/b191063.txt">Table of n, a(n) for n = 1..1000</a> %H A191063 <a href="https://oeis.org/index/Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a> %t A191063 Select[Prime[Range[200]], JacobiSymbol[#,19]==-1&] %t A191063 Select[Prime[Range[150]],PowerMod[#,9,19]==18&] (* _Harvey P. Dale_, Jun 29 2025 *) %o A191063 (Magma) [p: p in PrimesUpTo(599) | JacobiSymbol(p, 19) eq -1]; // _Vincenzo Librandi_, Sep 11 2012 %o A191063 (PARI) isok(p) = isprime(p) && !issquare(Mod(p, 19)); \\ _Michel Marcus_, Dec 25 2018 %K A191063 nonn,easy %O A191063 1,1 %A A191063 _T. D. Noe_, May 25 2011