A191108 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 3x+2 are in a.
1, 5, 13, 17, 37, 41, 49, 53, 109, 113, 121, 125, 145, 149, 157, 161, 325, 329, 337, 341, 361, 365, 373, 377, 433, 437, 445, 449, 469, 473, 481, 485, 973, 977, 985, 989, 1009, 1013, 1021, 1025, 1081, 1085, 1093, 1097, 1117, 1121, 1129, 1133, 1297, 1301, 1309, 1313, 1333, 1337, 1345, 1349, 1405, 1409, 1417, 1421, 1441, 1445
Offset: 1
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Cantor Set
- Wikipedia, SierpiĆski arrowhead curve
Programs
-
Mathematica
h = 3; i = -2; j = 3; k = 2; f = 1; g = 7; a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191108 *) b = (a + 2)/3; c = (a - 2)/3; r = Range[1, 900]; d = Intersection[b, r] (* A191108 closure property *) e = Intersection[c, r] (* A191108 closure property *)
-
PARI
a(n) = fromdigits(binary(n-1),3)<<2 + 1; \\ Kevin Ryde, Aug 05 2022
Comments