This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191112 #13 Sep 26 2015 18:40:45 %S A191112 1,3,12,42,165,3000,2142,39270,838695,2185092,194467182,649154415, %T A191112 33547795512,40753286805,24563658547425,1364238471026340, %U A191112 2297427262231332,1662166966658270160,783186317937632697,404695317060455732220,162293533192142440777455,634357227813958501290435 %N A191112 First occurrence of the n-th odd prime in A190911. %F A191112 a(n) = 0 (mod 3) for n >= 2. %F A191112 a(n) = 0 or 12 (mod 15) for n >= 3. %p A191112 A190911 := proc(n) option remember: local k: for k from 3 by 2 do if(gcd(k,n)=1 and gcd(k,n+3)=1)then return k: fi: od: end: for n from 2 do p:=ithprime(n): for k from 1 do if(A190911(k)=p)then print(k): break: fi: od: od: %o A191112 (PARI) A190911(n)=n*=n+3;forprime(p=3,,if(n%p,return(p))) %o A191112 {my(v=[0],t=3,p=5); %o A191112 print1("1, 3"); %o A191112 forprime(q=7,1000, %o A191112 u=vector(#v); %o A191112 for(i=1,#u, %o A191112 u[i]=lift(chinese(Mod(v[i],t),Mod( 0,p))); %o A191112 v[i]=lift(chinese(Mod(v[i],t),Mod(-3,p))) %o A191112 ); %o A191112 v=vecsort(concat(u,v)); %o A191112 for(j=2,#v, %o A191112 if(A190911(v[j])==q, %o A191112 print1(", "v[j]); %o A191112 break %o A191112 ) %o A191112 ); %o A191112 t*=p; %o A191112 p=q %o A191112 )} \\ _Charles R Greathouse IV_, Oct 09 2011 %Y A191112 Cf. A190911. %K A191112 nonn %O A191112 1,2 %A A191112 _Nathaniel Johnston_, May 26 2011 %E A191112 a(11)-a(22) from _Charles R Greathouse IV_, Oct 09 2011