This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191116 #10 Jul 13 2013 12:04:09 %S A191116 1,5,13,21,37,53,61,85,109,149,157,181,213,245,253,325,341,437,445, %T A191116 469,541,597,629,637,725,733,757,853,973,981,1013,1021,1301,1309,1333, %U A191116 1365,1405,1621,1749,1781,1789,1877,1885,1909,2165,2173,2197,2269,2389,2517,2549,2557,2901,2917,2933,2941,3029,3037,3061,3413 %N A191116 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 4x+1 are in a. %C A191116 See A191113. %H A191116 Reinhard Zumkeller, <a href="/A191116/b191116.txt">Table of n, a(n) for n = 1..10000</a> %t A191116 h = 3; i = -2; j = 4; k = 1; f = 1; g = 9; %t A191116 a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191116 *) %t A191116 b = (a + 2)/3; c = (a - 1)/4; r = Range[1, 1500]; %t A191116 d = Intersection[b, r] (* A191155 *) %t A191116 e = Intersection[c, r] (* A191129 *) %t A191116 m = (a + 1)/2 (* divisibility property *) %t A191116 p = (a + 3)/4 (* divisibility property *) %t A191116 q = (a + 3)/8 (* divisibility property *) %o A191116 (Haskell) %o A191116 import Data.Set (singleton, deleteFindMin, insert) %o A191116 a191116 n = a191116_list !! (n-1) %o A191116 a191116_list = 1 : f (singleton 5) %o A191116 where f s = m : (f $ insert (3*m-2) $ insert (4*m+1) s') %o A191116 where (m, s') = deleteFindMin s %o A191116 -- _Reinhard Zumkeller_, Jun 01 2011 %Y A191116 Cf. A191113. %K A191116 nonn %O A191116 1,2 %A A191116 _Clark Kimberling_, May 27 2011