This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191161 #23 Nov 22 2024 16:26:10 %S A191161 1,4,5,12,7,22,9,32,19,30,13,72,15,38,37,80,19,90,21,96,47,54,25,208, %T A191161 39,62,65,120,31,178,33,192,67,78,65,316,39,86,77,272,43,222,45,168, %U A191161 147,102,49,560,67,174,97,192,55 %N A191161 Hypersigma(n), definition 2: sum of the divisors of n plus the recursive sum of the divisors of the proper divisors. %C A191161 In wanting to ensure the definition was not arbitrary, I initially thought that 1s had to stop the recursion. But as T. D. Noe showed me, this doesn't have to be the case: the 1s can be included in the recursion. %H A191161 Charles R Greathouse IV, <a href="/A191161/b191161.txt">Table of n, a(n) for n = 1..10000</a> %H A191161 Jon Maiga, <a href="http://sequencedb.net/s/A191161">Computer-generated formulas for A191161</a>, Sequence Machine. %F A191161 a(n) = sigma(n) + sum_{d | n, d < n} a(d). - _Charles R Greathouse IV_, Dec 20 2011 %F A191161 From _Antti Karttunen_, Nov 22 2024: (Start) %F A191161 Following formulas were conjectured by Sequence Machine: %F A191161 For n > 1, a(n) = A191150(n) + A074206(n). %F A191161 a(n) = A330575(n) + A255242(n) = 2*A255242(n) + n = 2*A330575(n) - n. %F A191161 a(n) = Sum_{d|n} A330575(d). %F A191161 a(n) = Sum_{d|n} d*A067824(n/d). %F A191161 a(n) = Sum_{d|n} A000203(d)*A074206(n/d). %F A191161 a(n) = Sum_{d|n} A007429(d)*A174725(n/d). %F A191161 a(n) = Sum_{d|n} A000010(d)*A253249(n/d). %F A191161 a(n) = Sum_{d|n} A038040(d)*A323912(n/d). %F A191161 a(n) = Sum_{d|n} A060640(d)*A323910(n/d). %F A191161 (End) %t A191161 hsTD[n_] := hsTD[n] = Module[{d = Divisors[n]}, Total[d] + Total[hsTD /@ Most[d]]]; Table[hsTD[n], {n, 100}] (* From T. D. Noe *) %o A191161 (PARI) a(n)=sumdiv(n,d,if(d<n,d+a(d),n)) \\ _Charles R Greathouse IV_, Dec 20 2011 %Y A191161 Cf. A000203, A191150, A202687, A255242, A378211 (Dirichlet inverse). %Y A191161 Sequences that appear in the convolution formulas: A000010, A000203, A007429, A038040, A060640, A067824, A074206, A174725, A253249, A323910, A323912, A330575. %K A191161 nonn,easy %O A191161 1,2 %A A191161 _Alonso del Arte_, May 26 2011