cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191216 Arithmetic derivative of prime(n) * prime(n+1) * prime(n+2) * prime(n+3) * prime(n+4) * prime(n+5).

This page as a plain text file.
%I A191216 #5 Mar 31 2012 10:28:21
%S A191216 361,230456,1005768,3462570,11006128,25925028,61456764,127697940,
%T A191216 249379116,448408452,740850012,1263239320,1914568816,2884222410,
%U A191216 4371191782,6287341056,8758591370,11640682466,15938770638,21721208748,29153150298,38784336168,49888704100,62506263054,76188213990,95511276660,118760260290,150724895476,187405610004,243040520764
%N A191216 Arithmetic derivative of prime(n) * prime(n+1) * prime(n+2) * prime(n+3) * prime(n+4) * prime(n+5).
%H A191216 Extension to 5 primes of concepts in A001043 A127489 A127349 A127345
%F A191216 a(n) = (prime(n) * prime(n+1) * prime(n+2) * prime(n+3) * prime(n+4) * prime(n+5))' where f' is the arithmetic derivative (see A003415) of f.
%p A191216 der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
%p A191216 seq(dif(ithprime(i)*ithprime(i+1)*ithprime(i+2)*ithprime(i+3)*ithprime(i+4)*ithprime(i+5)),i=1..30);
%Y A191216 Cf. A001043, A127489, A127349, A127345.
%K A191216 nonn
%O A191216 1,1
%A A191216 _Giorgio Balzarotti_, May 26 2011