This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191239 #12 Oct 30 2022 11:05:15 %S A191239 1,1,1,2,2,1,0,5,3,1,0,4,9,4,1,0,4,13,14,5,1,0,0,18,28,20,6,1,0,0,12, %T A191239 49,50,27,7,1,0,0,8,56,105,80,35,8,1,0,0,0,56,161,195,119,44,9,1,0,0, %U A191239 0,32,210,366,329,168,54,10,1,0,0,0,16,200,581,721,518,228,65,11,1,0,0,0,0,160,732,1337,1288,774,300,77,12,1,0,0,0,0,80,780,2045,2716,2142,1110,385,90,13,1 %N A191239 Triangle T(n,k) = coefficient of x^n in expansion of (x+x^2+2*x^3)^k. %C A191239 1. Riordan Array (1,x+x^2+2*x^3) without first column. %C A191239 2. Riordan Array (1+x+2*x^3,x+x^2+2*x^3) numbering triangle (0,0). %C A191239 3. Bell Polynomial of second kind B(n,k){1,2,12,0,0,0,...,0}=n!/k!*T(n,k). %C A191239 4. For the g.f. 1/(1-x-x^2-2*x^3) we have a(n)=sum(k=1..n, T(n,k)) (see A077947) %C A191239 For more formulas see preprints. %H A191239 Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013. %H A191239 Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065 [math.CO], 2013. %F A191239 T(n,k) = Sum_{j=0..k} binomial(j,n-3*k+2*j)*2^(k-j)*binomial(k,j). %e A191239 Triangle begins: %e A191239 1, %e A191239 1,1, %e A191239 2,2,1, %e A191239 0,5,3,1, %e A191239 0,4,9,4,1, %e A191239 0,4,13,14,5,1, %e A191239 0,0,18,28,20,6,1, %o A191239 (Maxima) %o A191239 T(n,k):=sum(binomial(j,n-3*k+2*j)*2^(k-j)*binomial(k,j),j,0,k); %K A191239 nonn,tabl %O A191239 1,4 %A A191239 _Vladimir Kruchinin_, May 27 2011