A191257 a(n) = A067368(n)/2.
1, 3, 5, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 24, 25, 27, 29, 31, 33, 35, 37, 39, 40, 41, 43, 45, 47, 49, 51, 53, 55, 56, 57, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 77, 79, 81, 83, 85, 87, 88, 89, 91, 93, 95, 97, 99, 101, 103, 104, 105, 107, 109, 111, 113, 115, 117, 119, 120, 121, 123, 125, 127, 129, 131, 133, 135, 136, 137, 139, 141, 143
Offset: 1
Keywords
Links
- Recto Rex M. Calingasan and Alexander Vincent B. Policarpio, On the zeros of the OEIS A191257 zeta function, AIP Conference Proceedings 1905, 030011 (2017).
Crossrefs
Programs
-
Mathematica
t = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0, 3}, 3 -> {0, 1}}] &, {0}, 9] (* A191255 *) Flatten[Position[t, 0]] (* A005408, the odds *) a = Flatten[Position[t, 1]] (* A067368 *) b = Flatten[Position[t, 2]] (* A213258 *) a/2 (* A191257 *) b/4 (* a/2 *)
-
PARI
isok(n) = valuation(2*n, 2)%3==1; \\ Altug Alkan, Sep 21 2018
-
Python
def A191257(n): def f(x): return n+x-sum(((x>>i)-1>>1)+1 for i in range(0,x.bit_length(),3)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Feb 17 2025
Extensions
Name corrected by Altug Alkan, Apr 03 2018
New name from Jianing Song, Sep 21 2018
Comments