cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191269 Fixed point of the morphism 0 -> 001, 1 -> 02, 2 -> 01.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191250.
Proof of Kimberling's conjecture on the positions of 0 in this sequence: consider the letter to letter projection pi given by pi(0) = 0, pi(1) = 1, pi(2) = 1. Then pi sigma = tau pi, where tau is the morphism on {0,1} given by tau(0) = 001, tau(1) = 01. It follows that pi(a) = x, where x = A188432 is the fixed point of tau. Note that the positions of zero in a = A191269 are equal to the positions of zero in x. Since x is the infinite Fibonacci word with a zero in front, it follows that these positions are given by A026351. - Michel Dekking, Aug 24 2019

Crossrefs

Programs

  • Mathematica
    t = Nest[Flatten[# /. {0 -> {0, 0, 1}, 1 -> {0, 2}, 2 -> {0, 1}}] &, {0}, 7] (* A191269 *)
    Flatten[Position[t, 0]]  (* A026351, 1+lower Wythoff sequence, conjectured *)
    Flatten[Position[t, 1]] (* A191270 *)
    Flatten[Position[t, 2]] (* A191271 *)