This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191278 #6 May 27 2017 12:53:40 %S A191278 1,1,1,1,1,3,1,1,1,3,1,6,1,3,3,1,1,6,1,6,3,3,1,10,1,3,1,6,1,16,1,1,3, %T A191278 3,3,20,1,3,3,10,1,16,1,6,6,3,1,15,1,6,3,6,1,10,3,10,3,3,1,50,1,3,6,1, %U A191278 3,16,1,6,3,16,1,50,1,3,6,6,3,16,1,15,1,3,1,50,3,3,3,10,1,50 %N A191278 Count of Mosaic numbers that equal n. %C A191278 The number of solutions x to A000026(x)=n. %H A191278 R. J. Mathar, <a href="/A191278/b191278.txt">Table of n, a(n) for n = 1..1000</a> %F A191278 Let n=product_j p_j^e(j) be the prime factorization of n and beta=A073093(n). Then a(n)*beta = product_j binomial(beta,e(j)). [Gordon-Robertson in A000026, Theorem 1] %p A191278 A191278 := proc(n) %p A191278 local f, beta, a, j ; %p A191278 f := ifactors(n)[2] ; %p A191278 beta := A073093(n) ; %p A191278 a := 1/beta ; %p A191278 for j in ifactors(n)[2] do %p A191278 a := a*binomial(beta, op(2, j) ) ; %p A191278 end do: %p A191278 a ; %p A191278 end proc: %K A191278 nonn,easy %O A191278 1,6 %A A191278 _R. J. Mathar_, May 29 2011