cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191280 a(0)=1; for n>0, p2(n)+Sum(binomial(2*k,k)*p2(n-k)/2,k=1..n-1) where p2 = A002995, the number of unlabeled planar trees on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 18, 60, 210, 754, 2766, 10280, 38568, 145770, 554162, 2116568, 8115660, 31220672, 120442860, 465775226, 1805074882, 7008550224, 27257398714, 106166467074, 414068416752, 1616899329454, 6320798698322, 24734167234028, 96877398455260, 379765373701964, 1489867265555382, 5849164981941642, 22979031257945948
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2011

Keywords

Crossrefs

Programs

  • Maple
    C:=n->binomial(2*n,n)/(n+1); # A000108
    ch:=n->if n mod 2 = 1 then 1 else 0; fi;
    p2:=n->(1/(2*n)*add(numtheory[phi](n/d)*binomial(2*d,d), d in divisors(n))) - C(n)/2 +(1/2)*ch(n)*C((n-1)/2); # A002995
    a:=n->p2(n)+add(binomial(2*k,k)*p2(n-k)/2,k=1..n-1); [valid for n >= 1]