A191285 Increasing sequence S generated by these rules: 1 is in S, and if x is in S then 3x and floor((x^2)/2) are in S.
0, 1, 3, 4, 8, 9, 12, 24, 27, 32, 36, 40, 72, 81, 96, 108, 120, 216, 243, 288, 324, 360, 364, 512, 648, 729, 800, 864, 972, 1080, 1092, 1536, 1944, 2187, 2400, 2592, 2916, 3240, 3276, 3280, 4608, 5832, 6561, 7200, 7776, 8748, 9720, 9828, 9840, 13824, 17496, 19683, 21600, 23328, 26244, 29160, 29484, 29520, 29524
Offset: 1
Keywords
Examples
1 -> 0,3 -> 4,8,9,27 ->
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A191203.
Programs
-
Mathematica
g=12; Union[Flatten[NestList[{3#,Floor[(#^2)/2]}&,1,g]]] (* A191285; use g>11 to get all of first 60 terms *)
Comments