A191306 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n having height of first peak equal to k.
1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 2, 1, 13, 5, 1, 1, 23, 9, 2, 1, 43, 19, 6, 1, 1, 78, 34, 11, 2, 1, 148, 69, 26, 7, 1, 1, 274, 125, 47, 13, 2, 1, 526, 251, 103, 34, 8, 1, 1, 988, 461, 187, 62, 15, 2, 1, 1912, 923, 397, 146, 43, 9, 1, 1, 3628, 1715, 727, 266, 79, 17, 2, 1, 7060, 3431, 1519, 596, 199, 53, 10, 1
Offset: 0
Examples
T(5,2)=2 because we have UUDDH and HUUDD, where U=(1,1), D=(1,-1), H=(1,0). Triangle starts: 1; 1; 1, 1; 1, 2; 1, 4, 1; 1, 7, 2; 1, 13, 5, 1; 1, 23, 9, 2; 1, 43, 19, 6, 1;
Programs
-
Maple
C := ((1-sqrt(1-4*z^2))*1/2)/z^2: g := 2/(1-2*z+sqrt(1-4*z^2)): G := (1-t*z^2*C+t*z^2*g)/((1-t*z^2*C)*(1-z)): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
Formula
G.f.: G=G(t,z) satisfies G = 1+z*G + t*z^2*g/(1-t*z^2*C), where C=1+z^2*C^2 and g=2/(1-2*z+sqrt(1-4*z^2)).
Comments