cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191307 Sum of the heights of the first peaks in all dispersed Dyck paths of length n (i.e., in Motzkin paths of length n with no (1,0)-steps at positive heights).

This page as a plain text file.
%I A191307 #17 Mar 27 2017 15:43:03
%S A191307 0,0,1,2,6,11,26,47,103,187,397,727,1519,2806,5809,10814,22254,41702,
%T A191307 85460,161042,329002,622932,1269578,2413644,4909788,9367188,19024888,
%U A191307 36408748,73850908,141714823,287137498,552320023,1118042743,2155201063,4359162493,8419091443
%N A191307 Sum of the heights of the first peaks in all dispersed Dyck paths of length n (i.e., in Motzkin paths of length n with no (1,0)-steps at positive heights).
%H A191307 G. C. Greubel, <a href="/A191307/b191307.txt">Table of n, a(n) for n = 0..1000</a>
%F A191307 a(n) = Sum_{k>=0} k*A191306(n,k).
%F A191307 G.f.: ((1-z-z^2)*sqrt(1-4*z^2) - (1-2*z)*(1+z-z^2))/(2*z^3*(1-z)*(1-2*z)).
%F A191307 a(n) ~ 2^(n+3/2)/sqrt(Pi*n). - _Vaclav Kotesovec_, Mar 20 2014
%F A191307 Conjecture: -(n+3)*(n-2)*a(n) +(n^2+3*n-6)*a(n-1) +2*n*(2*n-3)*a(n-2) - 4*n*(n-1)*a(n-3)=0. - _R. J. Mathar_, Jun 14 2016
%e A191307 a(4)=6 because, denoting U=(1,1), D=(1,-1), H=(1,0), in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD the sum of the heights of the first peaks is 0+1+1+1+1+2=6.
%p A191307 g:=(((1-z-z^2)*sqrt(1-4*z^2)-(1-2*z)*(1+z-z^2))*1/2)/(z^3*(1-z)*(1-2*z)): gser:=series(g,z=0,40): seq(coeff(gser,z,n),n=0..35);
%t A191307 CoefficientList[Series[(((1-x-x^2)*Sqrt[1-4*x^2]-(1-2*x)*(1+x-x^2))*1/2) /(x^3*(1-x)*(1-2*x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o A191307 (PARI) x='x+O('x^50); concat([0,0], Vec(((1-z-z^2)*sqrt(1-4*z^2) - (1-2*z)*(1+z-z^2))/(2*z^3*(1-z)*(1-2*z)))) \\ _G. C. Greubel_, Mar 26 2017
%Y A191307 Cf. A191306.
%K A191307 nonn
%O A191307 0,4
%A A191307 _Emeric Deutsch_, May 30 2011