cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191313 Sum of the abscissae of the first returns to the horizontal axis (assumed to be 0 if there are no such returns) in all dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights).

This page as a plain text file.
%I A191313 #23 Jul 15 2022 02:37:12
%S A191313 0,0,2,5,15,30,71,134,296,551,1188,2211,4720,8815,18722,35105,74307,
%T A191313 139842,295223,557366,1174031,2222606,4672473,8866776,18607461,
%U A191313 35384676,74139407,141248270,295524297,563959752,1178389423,2252131246,4700155088,8995122383,18751860084
%N A191313 Sum of the abscissae of the first returns to the horizontal axis (assumed to be 0 if there are no such returns) in all dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights).
%C A191313 a(n) = Sum_{k>=0} k*A191312(n,k).
%H A191313 Vincenzo Librandi, <a href="/A191313/b191313.txt">Table of n, a(n) for n = 0..1000</a>
%F A191313 G.f.: g = z*(4*z-1+q)/(q*(1-z)^2*(1-2*z+q)), where q=sqrt(1-4*z^2).
%F A191313 a(n) ~ 2^n * (1 + 1/sqrt(2*Pi*n) + 1/3*(-1)^n/sqrt(2*Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F A191313 Conjecture: n*(3*n-13)*a(n) +2*(-6*n^2+29*n-18)*a(n-1) +(3*n^2-13*n+24)*a(n-2) +2*(21*n^2-124*n+150)*a(n-3) +4*(-15*n^2+92*n-132) *a(n-4) +8*(n-3)*(3*n-10) *a(n-5)=0. - _R. J. Mathar_, Jun 14 2016
%e A191313 a(4)=15 because the sum of the abscissae of the first returns in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD is 0+4+3+2+2+4=15; here H=(1,0), U=(1,1), and D=(1,-1).
%p A191313 g := z*(4*z-1+sqrt(1-4*z^2))/((1-z)^2*sqrt(1-4*z^2)*(1-2*z+sqrt(1-4*z^2))): gser := series(g, z = 0, 37): seq(coeff(gser, z, n), n = 0 .. 34);
%t A191313 CoefficientList[Series[x*(4*x-1+Sqrt[1-4*x^2])/((1-x)^2*Sqrt[1-4*x^2]*(1-2*x+Sqrt[1-4*x^2])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%Y A191313 Cf. A191312.
%Y A191313 Partial sums of A226881.
%K A191313 nonn
%O A191313 0,3
%A A191313 _Emeric Deutsch_, May 30 2011