A191318 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) having pyramid weight equal to k.
1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 10, 4, 1, 6, 16, 12, 1, 7, 24, 30, 8, 1, 8, 33, 56, 28, 1, 9, 44, 98, 84, 16, 1, 10, 56, 152, 179, 64, 1, 11, 70, 228, 358, 224, 32, 1, 12, 85, 320, 618, 536, 144, 1, 13, 102, 440, 1030, 1206, 576, 64, 1, 14, 120, 580, 1580, 2292, 1528, 320, 1, 15, 140, 754, 2370, 4202, 3820, 1440, 128
Offset: 0
Examples
T(6,2)=10 because we have HH(UD)(UD), HH(UUDD), H(UD)H(UD), H(UD)(UD)H, H(UUDD)H, (UD)HH(UD), (UD)H(UD)H, (UD)(UD)HH, (UUDD)HH, and U(UD)(UD)D, where U=(1,1), D=(1,-1), H=(1,0); the maximal pyramids are shown between parentheses. Triangle starts: 1; 1; 1, 1; 1, 2; 1, 3, 2; 1, 4, 5; 1, 5, 10, 4; 1, 6, 16, 12; 1, 7, 24, 30, 8;
Links
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
Programs
-
Maple
a := (z-1)*(2*t*z^2+z-1): c := -1+t*z^2: eq := a*z*G^2+a*G+c: f := RootOf(eq, G): fser := simplify(series(f, z = 0, 20)): for n from 0 to 16 do P[n] := sort(expand(coeff(fser, z, n))) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
Comments