A191319 Sum of pyramid weights of all dispersed Dyck paths of length n (i.e., of all Motzkin paths of length n with no (1,0) steps at positive heights).
0, 0, 1, 2, 7, 14, 37, 74, 177, 354, 807, 1614, 3579, 7158, 15591, 31182, 67071, 134142, 285861, 571722, 1209641, 2419282, 5089517, 10179034, 21314453, 42628906, 88918353, 177836706, 369734553, 739469106, 1533115953, 3066231906, 6341759073, 12683518146
Offset: 0
Keywords
Examples
a(4)=7 because the sum of the pyramid weights of HHHH, HH(UD), H(UD)H, (UD)HH, (UD)(UD), and (UUDD) is 0+1+1+1+2+2=7; the maximal pyramids are shown between parentheses.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
Crossrefs
Cf. A191318.
Programs
-
Maple
g := z^2/((1-2*z)*(1-z^2)*sqrt(1-4*z^2)): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 33);
-
Mathematica
CoefficientList[Series[x^2/((1-2*x)*(1-x^2)*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
Vec(1/((1-2*z)*(1-z^2)*sqrt(1-4*z^2))) \\ Charles R Greathouse IV, Jan 27 2016
Formula
a(n) = Sum_{k=0..n} k*A191318(n,k).
G.f.: g(z) = z^2/((1-2*z)*(1-z^2)*sqrt(1-4*z^2)).
a(n) ~ 2^(n+1/2)*sqrt(n)/(3*sqrt(Pi)) * (1 - 5/(6*n) + 1/4*(-1)^n/n). - Vaclav Kotesovec, Mar 20 2014
Conjecture: (-n+2)*a(n) +2*a(n-1) +5*(n-2)*a(n-2) -2*a(n-3) +4*(-n+2)*a(n-4)=0. - R. J. Mathar, Dec 07 2017
Comments