cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191319 Sum of pyramid weights of all dispersed Dyck paths of length n (i.e., of all Motzkin paths of length n with no (1,0) steps at positive heights).

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 37, 74, 177, 354, 807, 1614, 3579, 7158, 15591, 31182, 67071, 134142, 285861, 571722, 1209641, 2419282, 5089517, 10179034, 21314453, 42628906, 88918353, 177836706, 369734553, 739469106, 1533115953, 3066231906, 6341759073, 12683518146
Offset: 0

Views

Author

Emeric Deutsch, Jun 01 2011

Keywords

Comments

A pyramid in a dispersed Dyck path is a factor of the form U^h D^h, h being the height of the pyramid and U=(1,1), D=(1,-1). A pyramid in a dispersed Dyck path w is maximal if, as a factor in w, it is not immediately preceded by a U and immediately followed by a D. The pyramid weight of a dispersed Dyck path is the sum of the heights of its maximal pyramids.

Examples

			a(4)=7 because the sum of the pyramid weights of HHHH, HH(UD), H(UD)H, (UD)HH, (UD)(UD), and (UUDD) is 0+1+1+1+2+2=7; the maximal pyramids are shown between parentheses.
		

Crossrefs

Cf. A191318.

Programs

  • Maple
    g := z^2/((1-2*z)*(1-z^2)*sqrt(1-4*z^2)): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 33);
  • Mathematica
    CoefficientList[Series[x^2/((1-2*x)*(1-x^2)*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    Vec(1/((1-2*z)*(1-z^2)*sqrt(1-4*z^2))) \\ Charles R Greathouse IV, Jan 27 2016

Formula

a(n) = Sum_{k=0..n} k*A191318(n,k).
G.f.: g(z) = z^2/((1-2*z)*(1-z^2)*sqrt(1-4*z^2)).
a(n) ~ 2^(n+1/2)*sqrt(n)/(3*sqrt(Pi)) * (1 - 5/(6*n) + 1/4*(-1)^n/n). - Vaclav Kotesovec, Mar 20 2014
Conjecture: (-n+2)*a(n) +2*a(n-1) +5*(n-2)*a(n-2) -2*a(n-3) +4*(-n+2)*a(n-4)=0. - R. J. Mathar, Dec 07 2017