This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191336 #6 Jun 02 2025 04:08:11 %S A191336 1,1,2,1,1,0,0,1,2,2,1,0,0,1,2,2,1,1,0,1,1,0,1,1,2,2,1,0,0,1,2,2,1,0, %T A191336 0,1,1,2,1,1,2,1,1,0,1,1,2,2,1,0,0,1,2,2,1,0,0,1,1,2,1,1,2,1,1,0,0,1, %U A191336 2,2,1,0,0,1,2,2,1,1,0,1,1,0,1,1,2,1,1,0,0,1,2,2,1,0,0,1,1,2,1,1,0,1,1,0,1,1,2,2,1,0,0,1,2,2,1,0,0,1,1,2,1,1,2,1,1,0,1,1,2,2,1,0 %N A191336 (A022838 mod 2)+(A054406 mod 2). %C A191336 A022838: Beatty sequence for r=sqrt(3), %C A191336 A054406: Beatty sequence for s=(3+sqrt(3))/2 (complement %C A191336 of A022838), so that %C A191336 A191336(n)=([nr] mod 2)+([ns] mod 2), where [ ]=floor. %C A191336 A191336(n)=(number of odd numbers in {[nr],[ns]}). %F A191336 a(n)=([nr] mod 2)+([ns] mod 2), where r=sqrt(3), s=r/(r-1), and [ ]=floor. %t A191336 r = Sqrt[3]; s = r/(r - 1); h = 320; %t A191336 u = Table[Floor[n*r], {n, 1, h}] (* A022838 *) %t A191336 v = Table[Floor[n*s], {n, 1, h}] (* A054406 *) %t A191336 w = Mod[u, 2] + Mod[v, 2] (* A191336 *) %t A191336 Flatten[Position[w, 0]] (* A191337 *) %t A191336 Flatten[Position[w, 1]] (* A191338 *) %t A191336 Flatten[Position[w, 2]] (* A191339 *) %Y A191336 Cf. A191329, A191337, A191338, A191339. %K A191336 nonn %O A191336 1,3 %A A191336 _Clark Kimberling_, Jun 01 2011