cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191336 (A022838 mod 2)+(A054406 mod 2).

This page as a plain text file.
%I A191336 #6 Jun 02 2025 04:08:11
%S A191336 1,1,2,1,1,0,0,1,2,2,1,0,0,1,2,2,1,1,0,1,1,0,1,1,2,2,1,0,0,1,2,2,1,0,
%T A191336 0,1,1,2,1,1,2,1,1,0,1,1,2,2,1,0,0,1,2,2,1,0,0,1,1,2,1,1,2,1,1,0,0,1,
%U A191336 2,2,1,0,0,1,2,2,1,1,0,1,1,0,1,1,2,1,1,0,0,1,2,2,1,0,0,1,1,2,1,1,0,1,1,0,1,1,2,2,1,0,0,1,2,2,1,0,0,1,1,2,1,1,2,1,1,0,1,1,2,2,1,0
%N A191336 (A022838 mod 2)+(A054406 mod 2).
%C A191336 A022838: Beatty sequence for r=sqrt(3),
%C A191336 A054406: Beatty sequence for s=(3+sqrt(3))/2 (complement
%C A191336 of A022838), so that
%C A191336 A191336(n)=([nr] mod 2)+([ns] mod 2), where [ ]=floor.
%C A191336 A191336(n)=(number of odd numbers in {[nr],[ns]}).
%F A191336 a(n)=([nr] mod 2)+([ns] mod 2), where r=sqrt(3), s=r/(r-1), and [ ]=floor.
%t A191336 r = Sqrt[3]; s = r/(r - 1); h = 320;
%t A191336 u = Table[Floor[n*r], {n, 1, h}] (* A022838 *)
%t A191336 v = Table[Floor[n*s], {n, 1, h}] (* A054406 *)
%t A191336 w = Mod[u, 2] + Mod[v, 2] (* A191336 *)
%t A191336 Flatten[Position[w, 0]]   (* A191337 *)
%t A191336 Flatten[Position[w, 1]]   (* A191338 *)
%t A191336 Flatten[Position[w, 2]]   (* A191339 *)
%Y A191336 Cf. A191329, A191337, A191338, A191339.
%K A191336 nonn
%O A191336 1,3
%A A191336 _Clark Kimberling_, Jun 01 2011