cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A191339 Positions of 2 in A191336.

Original entry on oeis.org

3, 9, 10, 15, 16, 25, 26, 31, 32, 38, 41, 47, 48, 53, 54, 60, 63, 69, 70, 75, 76, 85, 91, 92, 98, 107, 108, 113, 114, 120, 123, 129, 130, 135, 136, 142, 145, 151, 152, 157, 158, 167, 173, 174, 180, 189, 190, 195, 196, 202, 205, 211, 212, 217, 218, 224, 227, 233, 234, 239, 240, 249, 250, 255, 256, 262, 271, 272, 277, 278, 284, 287
Offset: 1

Views

Author

Clark Kimberling, Jun 01 2011

Keywords

Comments

See A191336.

Crossrefs

Programs

A191337 Positions of 0 in A191336.

Original entry on oeis.org

6, 7, 12, 13, 19, 22, 28, 29, 34, 35, 44, 50, 51, 56, 57, 66, 67, 72, 73, 79, 82, 88, 89, 94, 95, 101, 104, 110, 111, 116, 117, 126, 132, 133, 139, 148, 149, 154, 155, 161, 164, 170, 171, 176, 177, 183, 186, 192, 193, 198, 199, 208, 214, 215, 221, 230, 231, 236, 237, 243, 246, 252, 253, 258, 259, 265, 268, 274, 275, 280, 281, 290
Offset: 1

Views

Author

Clark Kimberling, Jun 01 2011

Keywords

Comments

See A191336.

Crossrefs

Programs

A191338 Positions of 1 in A191336.

Original entry on oeis.org

1, 2, 4, 5, 8, 11, 14, 17, 18, 20, 21, 23, 24, 27, 30, 33, 36, 37, 39, 40, 42, 43, 45, 46, 49, 52, 55, 58, 59, 61, 62, 64, 65, 68, 71, 74, 77, 78, 80, 81, 83, 84, 86, 87, 90, 93, 96, 97, 99, 100, 102, 103, 105, 106, 109, 112, 115, 118, 119, 121, 122, 124, 125, 127, 128, 131, 134, 137, 138, 140, 141, 143, 144, 146, 147, 150, 153, 156, 159
Offset: 1

Views

Author

Clark Kimberling, Jun 01 2011

Keywords

Comments

See A191336.

Crossrefs

Programs

A191340 (A022839 mod 2)+(A108598 mod 2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 1, 0, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 0, 0, 1, 2, 2, 2, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Clark Kimberling, Jun 01 2011

Keywords

Comments

Let r=sqrt(5) and s=r/(r-1). There numbers yield the following two complementary Beatty sequences:
A022839(n)=[nr], A108598(n)=[ns], where [ ]=floor.
A191340(n)=the number of odd numbers in {[nr], [ns]}.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[5]; s = r/(r - 1); h = 120;
    u = Table[Floor[n*r], {n, 1, h}] (* A022839 *)
    v = Table[Floor[n*s], {n, 1, h}] (* A108598 *)
    w = Mod[u, 2] + Mod[v, 2] (* A191340 *)
    Flatten[Position[w, 0]]  (* A191380 *)
    Flatten[Position[w, 1]]  (* A191381 *)
    Flatten[Position[w, 2]]  (* A191382 *)

Formula

a(n)=([nr] mod 2)+([ns] mod 2), where r=sqrt(5), s=r/(r-1), [ ]=floor.
Showing 1-4 of 4 results.