cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191348 Array read by antidiagonals: ((ceiling(sqrt(n)) + sqrt(n))^k + (ceiling(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

This page as a plain text file.
%I A191348 #14 Nov 17 2019 01:43:07
%S A191348 1,0,1,0,1,1,0,2,2,1,0,4,6,2,1,0,8,20,7,2,1,0,16,68,26,8,3,1,0,32,232,
%T A191348 97,32,14,3,1,0,64,792,362,128,72,15,3,1,0,128,2704,1351,512,376,81,
%U A191348 16,3,1,0
%N A191348 Array read by antidiagonals: ((ceiling(sqrt(n)) + sqrt(n))^k + (ceiling(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.
%F A191348 For each row n >= 0 let T(n,0)=1 and T(n,1) = ceiling(sqrt(n)), then for each column k >= 2: T(n,k) = T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - _Charles L. Hohn_, Aug 23 2019
%e A191348 1, 0,  0,   0,    0,     0,      0,      0,       0,        0,         0, ...
%e A191348 1, 1,  2,   4,    8,    16,     32,     64,     128,      256,       512, ...
%e A191348 1, 2,  6,  20,   68,   232,    792,   2704,    9232,    31520,    107616, ...
%e A191348 1, 2,  7,  26,   97,   362,   1351,   5042,   18817,    70226,    262087, ...
%e A191348 1, 2,  8,  32,  128,   512,   2048,   8192,   32768,   131072,    524288, ...
%e A191348 1, 3, 14,  72,  376,  1968,  10304,  53952,  282496,  1479168,   7745024, ...
%e A191348 1, 3, 15,  81,  441,  2403,  13095,  71361,  388881,  2119203,  11548575, ...
%e A191348 1, 3, 16,  90,  508,  2868,  16192,  91416,  516112,  2913840,  16450816, ...
%e A191348 1, 3, 17,  99,  577,  3363,  19601, 114243,  665857,  3880899,  22619537, ...
%e A191348 1, 3, 18, 108,  648,  3888,  23328, 139968,  839808,  5038848,  30233088, ...
%e A191348 1, 4, 26, 184, 1316,  9424,  67496, 483424, 3462416, 24798784, 177615776, ...
%e A191348 1, 4, 27, 196, 1433, 10484,  76707, 561236, 4106353, 30044644, 219825387, ...
%e A191348 1, 4, 28, 208, 1552, 11584,  86464, 645376, 4817152, 35955712, 268377088, ...
%e A191348 1, 4, 29, 220, 1673, 12724,  96773, 736012, 5597777, 42574180, 323800109, ...
%e A191348 1, 4, 30, 232, 1796, 13904, 107640, 833312, 6451216, 49943104, 386642400, ...
%e A191348 ...
%o A191348 (PARI) T(n, k) = if (k==0, 1, if (k==1, ceil(sqrt(n)), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
%o A191348 matrix(9, 9, n, k, T(n-1, k-1)) \\ _Charles L. Hohn_, Aug 23 2019
%Y A191348 Row 1 is A000007, row 2 is A011782, row 3 is A006012, row 4 is A001075, row 5 is A081294, row 6 is A098648, row 7 is A084120, row 8 is A146963, row 9 is A001541, row 10 is A081341, row 11 is A084134, row 13 is A090965.
%Y A191348 Row 3*2 is A056236, row 4*2 is A003500, row 5*2 is A155543, row 9*2 is A003499.
%Y A191348 Cf. A191347 which uses floor() in place of ceiling().
%K A191348 nonn,tabl
%O A191348 0,8
%A A191348 _Charles L. Hohn_, May 31 2011