cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191354 Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), and (2,1).

This page as a plain text file.
%I A191354 #41 Sep 08 2022 08:45:57
%S A191354 1,1,3,9,25,75,227,693,2139,6645,20757,65139,205189,648427,2054775,
%T A191354 6526841,20775357,66251247,211617131,676930325,2168252571,6953348149,
%U A191354 22322825865,71735559255,230735316795,742773456825,2392949225565,7714727440755,24888317247705,80341227688095
%N A191354 Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), and (2,1).
%H A191354 G. C. Greubel, <a href="/A191354/b191354.txt">Table of n, a(n) for n = 0..1000</a>
%H A191354 Steffen Eger, <a href="http://arxiv.org/abs/1511.00622">On the Number of Many-to-Many Alignments of N Sequences</a>, arXiv:1511.00622 [math.CO], 2015.
%F A191354 G.f.: 1/sqrt(1-2*x-3*x^2-4*x^3). - _Mark van Hoeij_, Apr 16 2013
%F A191354 G.f.: Q(0), where Q(k) = 1 + x*(2+3*x+4*x^2)*(4*k+1)/( 4*k+2 - x*(2+3*x+4*x^2)*(4*k+2)*(4*k+3)/(x*(2+3*x+4*x^2)*(4*k+3) + 4*(k+1)/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Sep 14 2013
%F A191354 a(n) = Sum_{k=0..n} (binomial(2*k,k) * Sum_{j=0..k} (binomial(j,n-k-j) *binomial(k,j)*2^(j-k)*3^(-n+k+2*j)*4^(n-k-2*j))). - _Vladimir Kruchinin_, Feb 27 2016
%F A191354 D-finite with recurrence: +(n)*a(n) +(-2*n+1)*a(n-1) +3*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3)=0. - _R. J. Mathar_, Jan 14 2020
%t A191354 a[n_]:= Sum[Binomial[2k, k]*Sum[Binomial[j, n-k-j]*Binomial[k, j]*2^(j-k) *3^(-n+k+2j)*4^(n-k-2j), {j, 0, k}], {k, 0, n}];
%t A191354 Array[a, 30, 0] (* _Jean-François Alcover_, Jul 21 2018, after _Vladimir Kruchinin_ *)
%t A191354 CoefficientList[Series[1/Sqrt[1-2*x-3*x^2-4*x^3], {x, 0, 30}], x] (* _G. C. Greubel_, Feb 18 2019 *)
%o A191354 (PARI) /* same as in A092566 but use */
%o A191354 steps=[[1,0], [1,1], [1,2], [2,1]];
%o A191354 /* _Joerg Arndt_, Jun 30 2011 */
%o A191354 (PARI) my(x='x+O('x^30)); Vec(1/sqrt(1-2*x-3*x^2-4*x^3)) \\ _G. C. Greubel_, Feb 18 2019
%o A191354 (Maxima)
%o A191354 a(n):=sum(binomial(2*k,k) * sum(binomial(j,n-k-j) * 2^(j-k) * binomial(k,j) * 3^(-n+k+2*j) * 4^(n-k-2*j),j,0,k),k,0,n); /* _Vladimir Kruchinin_, Feb 27 2016 */
%o A191354 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1-2*x-3*x^2-4*x^3) )); // _G. C. Greubel_, Feb 18 2019
%o A191354 (Sage) (1/sqrt(1-2*x-3*x^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 18 2019
%Y A191354 Cf. A001850, A026641, A036355, A137644, A192364, A192365, A192369.
%K A191354 nonn
%O A191354 0,3
%A A191354 _Joerg Arndt_, Jun 30 2011