This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191357 #20 Feb 16 2025 08:33:14 %S A191357 103,479,3673,55147,2024063,243937297,142915724779,685893080269745, %T A191357 53978528420922581864,175329092084368391071206608, %U A191357 80227969100540338877503013472650510,26469961649988241699181245714190498215773679043 %N A191357 Floor(A^(C^n)), where A = 32.76 and C = 1.33. %C A191357 First seven terms are primes. %H A191357 Chris Caldwell, <a href="https://t5k.org/notes/proofs/A3n.html">A proof of a generalization of Mills' Theorem</a> %H A191357 G. L. Honaker, Jr. and Chris Caldwell, <a href="https://t5k.org/curios/cpage/20512.html">Prime Curios! 142915724779</a> %H A191357 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_085.htm">Puzzle 85</a> %H A191357 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FloorFunction.html">Floor Function</a> %F A191357 a(n) = floor(32.76^(1.33^n)). %e A191357 a(2) = 479 because 32.76^(1.33^2) = 479.1724192479.... %o A191357 (PARI) default(realprecision, 100); for(n=1, 12, print1(floor(32.76^(1.33^n)), ", ")); \\ _Arkadiusz Wesolowski_, Jul 18 2011 %Y A191357 Cf. A051254, A108739, A051021, A060449, A060699. %K A191357 nonn %O A191357 1,1 %A A191357 _Arkadiusz Wesolowski_, May 31 2011