This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191370 #28 Sep 06 2022 15:58:41 %S A191370 1,2,4,2,4,8,22,44,88,170,340,680,1366,2732,5464,10922,21844,43688, %T A191370 87382,174764,349528,699050,1398100,2796200,5592406,11184812,22369624, %U A191370 44739242 %N A191370 a(n) = 2*(1+(-1)^n)/3 + 2*A010892(n-1). %C A191370 a(n) and successive differences define an infinite array: %C A191370 1, 2, 4, 2, 4, 8, ... %C A191370 1, 2, -2, 2, 4, 14, ... %C A191370 1, -4, 4, 2, 10, 8, ... %C A191370 -5, 8, -2, 8, -2, 14, ... %C A191370 13, -10, 10, -10, 16, 2, ... %C A191370 -23, 20, -20, 26, -14, 32, ... %C A191370 ... %C A191370 Its main diagonal consists of the powers 2^n. The first upper diagonal is a signed sequence of 2's. The second upper diagonal contains essentially A135440. %H A191370 Muniru A Asiru, <a href="/A191370/b191370.txt">Table of n, a(n) for n = 0..3000</a> %H A191370 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,2). %F A191370 a(n+3) = 3*2^n - a(n), n >= 0. %F A191370 a(n+1) - 2*a(n) = -6*A131531(n+1). %F A191370 a(3*n) = A007613(n), a(1+3*n) = 2*A007613(n), a(2+3*n) = 4*A007613(n). %F A191370 a(n+6) = a(n) + 21*2^n. %F A191370 a(n) = ((2^n + 2*(-1)^n)*2^n - 2*i*sqrt(3)*((1+i*sqrt(3))^n - (1-i*sqrt(3))^n))/(3*2^n), where i=sqrt(-1); a(n+1) = 2*(A001045(n) + A010892(n)). - _Bruno Berselli_, Jun 06 2011 %F A191370 G.f.: ( -1+5*x^3 ) / ( (2*x-1)*(1+x)*(x^2-x+1) ). - _R. J. Mathar_, Jun 06 2011 %F A191370 a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4). - _Paul Curtz_, Jun 07 2011 %F A191370 a(n) = A113405(n+3) - 5*A113405(n). - _R. J. Mathar_, Jun 24 2011 %p A191370 A010892 := proc(n) op( 1+(n mod 6),[1,1,0,-1,-1,0]) ; end proc: %p A191370 A191370 := proc(n) 2^n/3+2*(-1)^n/3+2*A010892(n-1) ; end proc: %p A191370 seq(A191370(n),n=0..30) ; # _R. J. Mathar_, Jun 06 2011 %t A191370 LinearRecurrence[{2,0,-1,2},{1,2,4,2},30] (* _Harvey P. Dale_, Sep 06 2022 *) %Y A191370 Cf. A010892, A131531, A007613, A001045. %Y A191370 Cf. A007283, A024495, A113405. %K A191370 nonn,easy %O A191370 0,2 %A A191370 _Paul Curtz_, Jun 01 2011