This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191371 #39 May 12 2025 06:46:24 %S A191371 1,3,15,123,1635,35043,1206915,66622083,5884188675,830476531203, %T A191371 187106645932035,67241729173555203,38521811621470420995, %U A191371 35161184767296890265603,51112793797110111859802115,118291368253025368001553530883,435713124846749574718274002747395,2553666761436949125065383836043837443 %N A191371 Number of simple labeled graphs with (at most) 3-colored nodes such that no edge connects two nodes of the same color. %C A191371 Cf. A213442, which counts colorings of labeled graphs on n vertices using exactly 3 colors. For 3-colorable labeled graphs on n vertices see A076315. - _Peter Bala_, Apr 12 2013 %D A191371 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, 16-18. %H A191371 Andrew Howroyd, <a href="/A191371/b191371.txt">Table of n, a(n) for n = 0..50</a> %H A191371 Steven R. Finch, <a href="/A191371/a191371.pdf">Bipartite, k-colorable and k-colored graphs</a>, June 5, 2003. [Cached copy, with permission of the author] %H A191371 R. C. Read, <a href="https://doi.org/10.4153/CJM-1960-035-0">The number of k-colored graphs on labelled nodes</a>, Canad. J. Math., 12 (1960), 410-414. %H A191371 R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/pubs/pubfiles/18.pdf">Acyclic orientation of graphs</a>, Discrete Math. 5 (1973), 171-178. North Holland Publishing Company. %H A191371 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/k-ColorableGraph.html">k-Colorable Graph</a> %F A191371 a(n) = Sum(C(n,k)*C(n-k,r)*2^(k*r+k*m+r*m)) where the sum is taken over all nonnegative solutions to k + r + m = n. %F A191371 From _Peter Bala_, Apr 12 2013: (Start) %F A191371 a(n) = Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k))*A047863(k). %F A191371 a(n) = 3*A000685(n) for n >= 1. %F A191371 Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is E(x)^3 = sum {n >= 0} a(n)*x^n/(n!*2^C(n,2)) = 1 + 3*x + 15*x^2/(2!*2) + 123*x^3/(3!*2^3) + 1635*x^4/(4!*2^6) + .... %F A191371 In general, for k = 1, 2, ..., E(x)^k is a generating function for labeled k-colored graphs (see Read). For other examples see A047863 (k = 2) and A223887 (k = 4). (End) %e A191371 a(2) = 15: There are two labeled 3-colorable graphs on 2 nodes, namely %e A191371 A) 1 2 B) 1 2 %e A191371 o o o----o %e A191371 Using 3 colors there are 9 ways to color the graph of type A and 3*2 = 6 ways to color the graph of type B so that adjacent vertices do not share the same color. Thus there are in total 15 labeled 3-colored graphs on 2 vertices. %t A191371 f[{k_,r_,m_}]:= Binomial[m+r+k,k] Binomial[m+r,r] 2^ (k r + k m + r m); Table[Total[Map[f,Compositions[n,3]]],{n,0,20}] %o A191371 (Python) %o A191371 from sympy import binomial %o A191371 def a047863(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) %o A191371 def a(n): return sum([binomial(n, k)*2**(k*(n - k))*a047863(k) for k in range(n + 1)]) # _Indranil Ghosh_, Jun 03 2017 %o A191371 (PARI) seq(n)={my(p=(sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^3); Vecrev(sum(j=0, n, j!*2^binomial(j,2)*polcoef(p,j)*x^j))} \\ _Andrew Howroyd_, Dec 03 2018 %Y A191371 Column k=3 of A322280. %Y A191371 Cf. A047863. A000685, A076315, A223887. %K A191371 nonn,easy %O A191371 0,2 %A A191371 _Geoffrey Critzer_, Jun 01 2011