This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191374 #26 Apr 25 2016 12:05:02 %S A191374 0,0,1,44,912,61952,8160260,888954284,180955852060,50317255621843, %T A191374 12251146829850324,4243527581615332664,1602629887788636447221, %U A191374 622433536382831426225696,344515231090957672408413959 %N A191374 Number of ways (up to rotations and reflections) of arranging numbers 1 through 2n around a circle such that the sum of each pair of adjacent numbers is composite. %C A191374 One of the obvious analogs of sequence A051252, which has the sums being prime. Presumably it is an open problem as to whether a(n) > 0 always for this problem as well. %C A191374 The Guy reference deals with each adjacent pair summing to a prime. - _T. D. Noe_, Jun 08 2011 %D A191374 R. K. Guy, Unsolved Problems in Number Theory, section C1. %F A191374 Bisection of A182540: a(n) = A182540(2*n). - _Max Alekseyev_, Aug 18 2013 %e A191374 a(3) = 1, the arrangement is 1,3,6,2,4,5. %o A191374 (MATLAB) %o A191374 function D=primecirc(n) %o A191374 tic %o A191374 a = 2:2*n; %o A191374 A=perms(a); %o A191374 for i =1:factorial(2*n-1) %o A191374 B(i,:)=[1 A(i,:)]; %o A191374 end %o A191374 for k=1:size(B,2)-1 %o A191374 F(:,k) = B(:,k)+B(:,k+1); %o A191374 end %o A191374 if k>1 %o A191374 F(:,k+1)=B(:,end)+B(:,1); %o A191374 end %o A191374 l=1; %o A191374 for i=1:factorial(2*n-1) %o A191374 if ~isprime(F(i,:)) == ones(1,length(B(1,:))) %o A191374 C(l,:)=B(i,:); %o A191374 l=l+1; %o A191374 end %o A191374 end %o A191374 if ~exist('C') %o A191374 D=0; %o A191374 return %o A191374 end %o A191374 if size(C,1)==1 %o A191374 D=1; %o A191374 else %o A191374 D=size(C,1)/2; %o A191374 end %o A191374 toc %Y A191374 Cf. A051252. %K A191374 nonn,more %O A191374 1,4 %A A191374 _Bennett Gardiner_, Jun 01 2011 %E A191374 a(8)-a(15) from _Max Alekseyev_, Aug 19 2013