This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191375 #11 Feb 24 2023 16:26:24 %S A191375 3,11,17,19,43,59,137,179,347,443,449,467,491,509,569,619,883,907, %T A191375 1051,1229,1601,2753,3203,3467,3491,3907,6491,8363,8387,8803,20749, %U A191375 20809,21893,24917,28661,41641,44497,49393,54323,55171,62219,75029,108587,284267,372173 %N A191375 Primes that are the sum of squares of three positive Fibonacci numbers. %F A191375 a(n) > exp(n^(1/3)*log(phi+1))/5. - _Charles R Greathouse IV_, Feb 24 2023 %e A191375 43 = fib(3)^2 + fib(3)^2 + fib(5)^2 is prime. %t A191375 f = Union[Table[Fibonacci[n]^2, {n, 16}]]; t = Union[Flatten[Table[ f[[i]] + f[[j]] + f[[k]], {i, Length[f]}, {j, i, Length[f]}, {k, j, Length[f]}]]]; Select[t, # <= f[[-1]] && PrimeQ[#] &] (* _T. D. Noe_, Jun 03 2011 *) %o A191375 (PARI) list(lim)=my(f=List(),v=List()); for(n=1,oo, my(t=fibonacci(n)^2); if(t+2>lim, break); listput(f,t)); for(i=1,#f, for(j=1,i, for(k=1,j, my(p=f[i]+f[j]+f[k]); if(p>lim, break); if(isprime(p), listput(v,p))))); Set(v) \\ _Charles R Greathouse IV_, Feb 24 2023 %Y A191375 Cf. A000045, A179459. %K A191375 nonn,easy %O A191375 1,1 %A A191375 _Carmine Suriano_, Jun 01 2011