cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191384 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) with k ascents of length 1. An ascent is a maximal sequence of consecutive (1,1)-steps.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 1, 3, 4, 3, 5, 8, 6, 1, 7, 14, 10, 4, 12, 26, 21, 10, 1, 18, 42, 41, 20, 5, 31, 77, 83, 45, 15, 1, 47, 128, 150, 96, 35, 6, 81, 234, 293, 209, 85, 21, 1, 125, 388, 530, 414, 196, 56, 7, 216, 704, 1023, 858, 455, 147, 28, 1, 337, 1172, 1828, 1668, 974, 364, 84, 8, 583, 2119, 3479, 3385, 2133, 896, 238, 36, 1
Offset: 0

Views

Author

Emeric Deutsch, Jun 01 2011

Keywords

Comments

Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,0) = A191385(n).
Sum_{k>=0} k*T(n,k) = A191386(n).

Examples

			T(5,2)=3 because we have HUDUD, UDHUD, and UDUDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
  1;
  1;
  1,  1;
  1,  2;
  2,  3,  1;
  3,  4,  3;
  5,  8,  6,  1;
  7, 14, 10,  4;
		

Crossrefs

Programs

  • Maple
    G := ((t*z^2-(1-z)^2+sqrt((1+z^2-t*z^2)*(1-3*z^2-t*z^2)))*1/2)/(z*(1-2*z+z^2-z^3-t*z^2+t*z^3)): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) = (t*z^2 - (1-z)^2 + sqrt((1+z^2-t*z^2)*(1-3*z^2-t*z^2)))/(2*z*(1-2*z+z^2-z^3-t*z^2+t*z^3)).