This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191385 #43 Oct 20 2024 04:08:24 %S A191385 1,1,1,1,2,3,5,7,12,18,31,47,81,125,216,337,583,918,1590,2522,4372, %T A191385 6977,12104,19415,33703,54297,94306,152507,265005,429974,747450, %U A191385 1216297,2115118,3450817,6002813,9816460,17080924,27991422,48718380,79989880,139252802,229034820,398806718 %N A191385 Number of dispersed Dyck paths of length n having no ascents of length 1. %C A191385 Dispersed Dyck paths are Motzkin paths with no (1,0) steps at positive heights. An ascent is a maximal sequence of consecutive (1,1)-steps. %C A191385 The number of UU-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are UU-equivalent iff the positions of pattern UU are identical in these paths. - _Sergey Kirgizov_, Apr 08 2018 %H A191385 Gheorghe Coserea, <a href="/A191385/b191385.txt">Table of n, a(n) for n = 0..300</a> %H A191385 J.-L. Baril, R. Genestier, A. Giorgetti, and A. Petrossian, <a href="http://jl.baril.u-bourgogne.fr/cartes.pdf">Rooted planar maps modulo some patternss</a>, Preprint 2016. %H A191385 Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, <a href="https://arxiv.org/abs/1804.01293">Enumeration of Łukasiewicz paths modulo some patterns</a>, arXiv:1804.01293 [math.CO], 2018. %H A191385 J.-L. Baril and A. Petrossian, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Baril/baril3.html">Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two</a>, J. Int. Seq. 18 (2015) 15.7.1 %H A191385 K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, <a href="http://arxiv.org/abs/1510.01952">Equivalence classes of ballot paths modulo strings of length 2 and 3</a>, arXiv:1510.01952 [math.CO], 2015. %H A191385 Helmut Prodinger, <a href="https://arxiv.org/abs/2402.13026">Dispersed Dyck paths revisited</a>, arXiv:2402.13026 [math.CO], 2024. See p. 3. %F A191385 a(n) = A191384(n,0). %F A191385 G.f.: g(z) = ((1-z)^2 - sqrt((1+z^2)*(1-3*z^2)))/(2*z*(z^3-(1-z)^2)). %F A191385 a(n-1) = Sum_{m=floor((n+1)/2)..n} ((2*m-n)*sum(j=2*m-n..m, binomial(n-2*m+2*j-1,j-1)*(-1)^(j-m)*binomial(m,j)))/m. - _Vladimir Kruchinin_, Mar 09 2013 %F A191385 Recurrence: (n+1)*a(n) = 2*(n+1)*a(n-1) + (n-5)*a(n-2) - 3*(n-3)*a(n-3) + (5*n-19)*a(n-4) - 2*(4*n-17)*a(n-5) + 3*(n-5)*a(n-6) - 3*(n-5)*a(n-7). - _Vaclav Kotesovec_, Mar 21 2014 %F A191385 a(n) ~ 3^(n/2+1) * (7*sqrt(3)+12 +(-1)^n*(7*sqrt(3)-12)) / (n^(3/2)*sqrt(2*Pi)). - _Vaclav Kotesovec_, Mar 21 2014 %F A191385 A(x) = (1 + x^2*A001006(x^2))/(1 - x + x^2 - x^3*A001006(x^2)). - _Gheorghe Coserea_, Jan 06 2017 %e A191385 a(5)=3 because we have HHHHH, HUUDD, and UUDDH, where U=(1,1), D=(1,-1), and H=(1,0). %p A191385 g := (((1-z)^2-sqrt((1+z^2)*(1-3*z^2)))*1/2)/(z*(z^3-(1-z)^2)): gser := series(g, z = 0, 45): seq(coeff(gser, z, n), n = 0 .. 42); %t A191385 CoefficientList[Series[(((1-x)^2-Sqrt[(1+x^2)*(1-3*x^2)])*1/2)/(x*(x^3-(1-x)^2)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 21 2014 *) %o A191385 (PARI) %o A191385 seq(N) = { %o A191385 my(x='x+O('x^N), A001006 = (1 - x - sqrt(1-2*x-3*x^2))/(2*x^2), %o A191385 y=subst(A001006, 'x, 'x^2)); %o A191385 Vec((1+x^2*y) / (1-x+x^2-x^3*y)); %o A191385 }; %o A191385 seq(43) \\ _Gheorghe Coserea_, Jan 06 2017 %Y A191385 Cf. A191384, A274110-A274115. %K A191385 nonn,walk %O A191385 0,5 %A A191385 _Emeric Deutsch_, Jun 01 2011