cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191396 Sum of the heights of the base pyramids in all dispersed Dyck paths of length n (i.e., in all Motzkin paths of length n with no (1,0)-steps at positive heights). A base pyramid is a factor of the form U^j D^j (j>0), starting at the horizontal axis. Here U=(1,1) and D=(1,-1).

This page as a plain text file.
%I A191396 #21 Jul 22 2022 11:46:57
%S A191396 0,0,1,2,7,14,35,70,156,312,663,1326,2756,5512,11325,22650,46227,
%T A191396 92454,187891,375782,761465,1522930,3079475,6158950,12434015,24868030,
%U A191396 50142687,100285374,202010787,404021574,813191039,1626382078,3271314744,6542629488
%N A191396 Sum of the heights of the base pyramids in all dispersed Dyck paths of length n (i.e., in all Motzkin paths of length n with no (1,0)-steps at positive heights). A base pyramid is a factor of the form U^j D^j (j>0), starting at the horizontal axis. Here U=(1,1) and D=(1,-1).
%H A191396 G. C. Greubel, <a href="/A191396/b191396.txt">Table of n, a(n) for n = 0..1000</a>
%F A191396 a(n) = Sum_{k>=0} k*A191395(n,k).
%F A191396 G.f.: g(z) = 4*z^2/(1-2*z-z^2+2*z^3+(1-z^2)*sqrt(1-4*z^2))^2.
%F A191396 a(n) ~ 2^(n+3)/9 * (1-sqrt(2)/sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 21 2014
%F A191396 D-finite with recurrence n*a(n) -2*n*a(n-1) +6*(-n+2)*a(n-2) +12*(n-2)*a(n-3) +3*(3*n-8)*a(n-4) +6*(-3*n+8)*a(n-5) +4*(-n+3)*a(n-6) +8*(n-3)*a(n-7)=0. - _R. J. Mathar_, Oct 08 2016
%e A191396 a(4)=7 because in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD the sum of the heights of the base pyramids are 0, 1, 1, 1, 2, and 2, respectively.
%p A191396 g := 4*z^2/(1-2*z-z^2+2*z^3+(1-z^2)*sqrt(1-4*z^2))^2: gser := series(g, z = 0, 37): seq(coeff(gser, z, n), n = 0 .. 33);
%t A191396 CoefficientList[Series[4*x^2/(1-2*x-x^2+2*x^3+(1-x^2)*Sqrt[1-4*x^2])^2, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 21 2014 *)
%o A191396 (PARI) x='x+O('x^50); concat([0,0], Vec(4*x^2/(1-2*x-x^2+2*x^3+(1-x^2)*sqrt(1-4*x^2))^2)) \\ _G. C. Greubel_, May 27 2017
%K A191396 nonn
%O A191396 0,4
%A A191396 _Emeric Deutsch_, Jun 04 2011