A191399 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of semilength n having k peak plateaux.
1, 1, 2, 3, 5, 1, 8, 2, 13, 7, 21, 14, 34, 35, 1, 55, 68, 3, 89, 149, 14, 144, 282, 36, 233, 576, 114, 1, 377, 1068, 267, 4, 610, 2088, 711, 23, 987, 3810, 1566, 72, 1597, 7229, 3771, 272, 1, 2584, 13024, 7953, 744, 5, 4181, 24179, 17922, 2304, 34, 6765, 43114, 36594, 5780, 125
Offset: 0
Examples
T(8,2)=1 because we have (UUDD)(UUDD), where U=(1,1) and D=(1,-1) (the peak plateaux are shown between parentheses). Triangle starts: 1; 1; 2; 3; 5, 1; 8, 2; 13, 7; 21, 14; 34, 35, 1;
Programs
-
Maple
eq := (t*z^4-z^4-2*z^3+z^2+2*z-1)*G*(1+z*G)+1-z^2 = 0: g := RootOf(eq, G): Gser := simplify(series(g, z = 0, 23)): for n from 0 to 19 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 19 do seq(coeff(P[n], t, k), k = 0 .. floor((1/4)*n)) end do; # yields sequence in triangular form
Formula
G.f.: G=G(t,z) satisfies (t*z^4-z^4-2*z^3+z^2+2*z-1)*G*(1+z*G)+1-z^2=0.
Comments