cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191414 Unitary Jordan function J_2^*(n).

Original entry on oeis.org

1, 3, 8, 15, 24, 24, 48, 63, 80, 72, 120, 120, 168, 144, 192, 255, 288, 240, 360, 360, 384, 360, 528, 504, 624, 504, 728, 720, 840, 576, 960, 1023, 960, 864, 1152, 1200, 1368, 1080, 1344, 1512, 1680, 1152, 1848, 1800, 1920, 1584, 2208, 2040, 2400, 1872, 2304, 2520, 2808, 2184, 2880, 3024, 2880, 2520
Offset: 1

Views

Author

R. J. Mathar, Jun 01 2011

Keywords

Comments

Unitary convolution of A000290 and A076479. The unitary analog of A007434.
Unitary Jordan functions J_k^*(n) are the unitary convolution of the unitary Mobius function and n^k, or simply J_k^*(n) = J_1^*(n^k) with J_1^*(n) = A047994(n). They are multiplicative with a(p^e) = p^(k*e)-1.

Crossrefs

Cf. A000290, A002117, A034448, A047994 (J_1^*(n)), A076479.

Programs

  • Mathematica
    a[n_] := Times @@ (#[[1]]^#[[2]] - 1 & ) /@ FactorInteger[n^2]; a[1] = 1; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2*f[i,2])-1);} \\ Amiram Eldar, Nov 05 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A191414(n): return prod(p**(e<<1)-1 for p,e in factorint(n).items()) # Chai Wah Wu, Apr 02 2025

Formula

Multiplicative with a(p^e) = p^(2*e)-1, e>0.
a(n) = A047994(n^2).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(d) * (n/d)^2. - Amiram Eldar, Sep 12 2020
Sum_{k>=1} 1/a(k) = 1.7789153256588699707937240866939851480088485084691145802685706798681731662... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/3) * Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.298388788003... . - Amiram Eldar, Nov 05 2022
a(n) = A034448(n) * A047994(n). - Amiram Eldar, Apr 04 2023