cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191426 Dispersion of (3+[n*r]), where r=(golden ratio)=(1+sqrt(5))/2 and [ ]=floor, by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 6, 3, 17, 12, 7, 5, 30, 22, 14, 11, 8, 51, 38, 25, 20, 15, 10, 85, 64, 43, 35, 27, 19, 13, 140, 106, 72, 59, 46, 33, 24, 16, 229, 174, 119, 98, 77, 56, 41, 28, 18, 373, 284, 195, 161, 127, 93, 69, 48, 32, 21, 606, 462, 318, 263, 208, 153, 114, 80, 54, 36, 23, 983, 750, 517, 428, 339, 250, 187, 132, 90, 61, 40, 26
Offset: 1

Views

Author

Clark Kimberling, Jun 02 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022342 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.

Examples

			Northwest corner:
  1...4...9...17..30
  2...6...12..22..38
  3...7...14..25..43
  5...11..20..35..59
  8...15..27..46..77
		

References

  • Clark Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r = 40; r1 = 12; (* r=#rows of T, r1=#rows to show *)
    c = 40; c1 = 12; (* c=#cols of T, c1=#cols to show *)
    x = GoldenRatio; f[n_] := Floor[n*x + 3]
    mex[list_] :=  NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191426 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]]  (* A191426 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)