A191427 Dispersion of ([n*r+3/2]), where r=(golden ratio)=(1+sqrt(5))/2 and [ ]=floor, by antidiagonals.
1, 3, 2, 6, 4, 5, 11, 7, 9, 8, 19, 12, 16, 14, 10, 32, 20, 27, 24, 17, 13, 53, 33, 45, 40, 29, 22, 15, 87, 54, 74, 66, 48, 37, 25, 18, 142, 88, 121, 108, 79, 61, 41, 30, 21, 231, 143, 197, 176, 129, 100, 67, 50, 35, 23, 375, 232, 320, 286, 210, 163, 109, 82, 58, 38, 26, 608, 376, 519, 464, 341, 265, 177, 134, 95, 62, 43, 28
Offset: 1
Examples
Northwest corner: 1...3...6...11..19 2...4...7...12..20 5...9...16..27..45 8...14..24..40..66 10..17..29..48..79
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r = 40; r1 = 12; (* r=#rows of T, r1=#rows to show *) c = 40; c1 = 12; (* c=#cols of T, c1=#cols to show *) x = GoldenRatio; f[n_] := Floor[n*x + 3/2] mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191427 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191427 sequence *) (* Peter J. C. Moses, Jun 01 2011 *)
Comments