This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191428 #12 Oct 20 2024 21:02:21 %S A191428 1,3,2,6,4,5,11,8,9,7,19,14,16,12,10,32,24,27,21,17,13,53,40,45,35,29, %T A191428 22,15,87,66,74,58,48,37,25,18,142,108,121,95,79,61,42,30,20,231,176, %U A191428 197,155,129,100,69,50,33,23,375,286,320,252,210,163,113,82,55,38,26,608,464,519,409,341,265,184,134,90,63,43,28 %N A191428 Dispersion of ([n*r+r]), where r=(golden ratio)=(1+sqrt(5))/2 and [ ]=floor, by antidiagonals. %C A191428 Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples: %C A191428 (1) s=A000040 (the primes), D=A114537, u=A114538. %C A191428 (2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603. %C A191428 (3) s=A007067, D=A035506 (Stolarsky array), u=A133299. %C A191428 More recent examples of dispersions: A191426-A191455. %e A191428 Northwest corner: %e A191428 1...3...6...11..19 %e A191428 2...4...8...14..24 %e A191428 5...9...16..27..45 %e A191428 7...12..21..35..58 %e A191428 10..17..29..48..79 %t A191428 (* Program generates the dispersion array T of increasing sequence f[n] *) %t A191428 r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *) %t A191428 c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *) %t A191428 x = GoldenRatio; f[n_] := Floor[n*x + x] %t A191428 (* f(n) is complement of column 1 *) %t A191428 mex[list_] := %t A191428 NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, %t A191428 Length[Union[list]]] %t A191428 rows = {NestList[f, 1, c]}; %t A191428 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191428 t[i_, j_] := rows[[i, j]]; %t A191428 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] %t A191428 (* A191428 array *) %t A191428 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] %t A191428 (* A191428 sequence *) %t A191428 (* Program by _Peter J. C. Moses_, Jun 01 2011 *) %Y A191428 Cf. A114537, A035513, A035506. %K A191428 nonn,tabl %O A191428 1,2 %A A191428 _Clark Kimberling_, Jun 03 2011