A191429 Dispersion of ([n*sqrt(2)+2]), where [ ]=floor, by antidiagonals.
1, 3, 2, 6, 4, 5, 10, 7, 9, 8, 16, 11, 14, 13, 12, 24, 17, 21, 20, 18, 15, 35, 26, 31, 30, 27, 23, 19, 51, 38, 45, 44, 40, 34, 28, 22, 74, 55, 65, 64, 58, 50, 41, 33, 25, 106, 79, 93, 92, 84, 72, 59, 48, 37, 29, 151, 113, 133, 132, 120, 103, 85, 69, 54, 43, 32, 215, 161, 190, 188, 171, 147, 122, 99, 78, 62, 47, 36
Offset: 1
Examples
Northwest corner: 1...3...6...10..16 2...4...7...11..17 5...9...14..21..31 8...13..20..30..44 12..18..27..40..58
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T to compute, r1=# rows to show *) c = 40; c1 = 12; (* c=# cols to compute, c1=# cols to show *) x = Sqrt[2]; f[n_] := Floor[n*x + 2] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; (* the array T *) TableForm[ Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191429 array *) Flatten[Table[ t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191429 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments