A191430 Dispersion of ([n*sqrt(2)+3/2]), where [ ]=floor, by antidiagonals.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 13, 17, 18, 21, 22, 19, 16, 25, 26, 31, 32, 28, 24, 20, 36, 38, 45, 46, 41, 35, 29, 23, 52, 55, 65, 66, 59, 50, 42, 34, 27, 75, 79, 93, 94, 84, 72, 60, 49, 39, 30, 107, 113, 133, 134, 120, 103, 86, 70, 56, 43, 33, 152, 161, 189, 191, 171, 147, 123, 100, 80, 62, 48, 37
Offset: 1
Examples
Northwest corner: 1...2...4...7...11 3...5...12..18..18 6...9...14..21..31 10..15..22..32..46 13..19..28..41..59
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r = 40; r1 = 12; (* r=# rows of T to compute, r1=# rows to show *) c = 40; c1 = 12; (* c=# cols to compute, c1=# cols to show *) x = Sqrt[2]; f[n_] := Floor[n*x + 3/2] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; (* the array T *) TableForm[ Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191430 array *) Flatten[Table[ t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191430 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments