A191434 Dispersion of ([n*x+n+3/2]), where x=(golden ratio) and [ ]=floor, by antidiagonals.
1, 4, 2, 11, 6, 3, 30, 17, 9, 5, 80, 46, 25, 14, 7, 210, 121, 66, 38, 19, 8, 551, 318, 174, 100, 51, 22, 10, 1444, 834, 457, 263, 135, 59, 27, 12, 3781, 2184, 1197, 690, 354, 155, 72, 32, 13, 9900, 5719, 3135, 1807, 928, 407, 189, 85, 35, 15, 25920, 14974
Offset: 1
Examples
Northwest corner: 1.....4....11....30...80 2.....6....17....46...121 3.....9....25....66...174 5.....14...38...100...263 7.....19...51...135...354
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; x = 1 + GoldenRatio; f[n_] := Floor[n*x + 3/2] (* f(n) is complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191434 array *) Flatten[Table[ t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191434 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments