A191438 Dispersion of ([n*sqrt(2)+n]), where [ ]=floor, by antidiagonals.
1, 2, 3, 4, 7, 5, 9, 16, 12, 6, 21, 38, 28, 14, 8, 50, 91, 67, 33, 19, 10, 120, 219, 161, 79, 45, 24, 11, 289, 528, 388, 190, 108, 57, 26, 13, 697, 1274, 936, 458, 260, 137, 62, 31, 15, 1682, 3075, 2259, 1105, 627, 330, 149, 74, 36, 17, 4060, 7423, 5453
Offset: 1
Examples
Northwest corner: 1....2....4....9....21 3....7....16...38...91 5....12...28...67...161 6....14...33...79...190 8....19...45...108..260
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; x = Sqr[2]; f[n_] := Floor[n*x+n] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191438 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191438 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments