This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191439 #16 Oct 21 2024 00:46:56 %S A191439 1,2,3,5,7,4,12,17,10,6,29,41,24,14,8,70,99,58,34,19,9,169,239,140,82, %T A191439 46,22,11,408,577,338,198,111,53,27,13,985,1393,816,478,268,128,65,31, %U A191439 15,2378,3363,1970,1154,647,309,157,75,36,16,5741,8119,4756 %N A191439 Dispersion of ([n*sqrt(2)+n+1/2]), where [ ]=floor, by antidiagonals. %C A191439 Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence. Examples: %C A191439 (1) s=A000040 (the primes), D=A114537, u=A114538. %C A191439 (2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603. %C A191439 (3) s=A007067, D=A035506 (Stolarsky array), u=A133299. %C A191439 More recent examples of dispersions: A191426-A191455. %H A191439 Robbert Fokkink, <a href="https://arxiv.org/abs/2309.01644">The Pell Tower and Ostronometry</a>, arXiv:2309.01644 [math.CO], 2023. %e A191439 Northwest corner: %e A191439 1....2....5....12...29 %e A191439 3....7....17...41...99 %e A191439 4....10...24...58...140 %e A191439 6....14...34...82...198 %e A191439 8....19...46...111..268 %t A191439 (* Program generates the dispersion array T of increasing sequence f[n] *) %t A191439 r=40; r1=12; c=40; c1=12; x = Sqr[2]; %t A191439 f[n_] := Floor[n*x+n+1/2] (* complement of column 1 *) %t A191439 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] %t A191439 rows = {NestList[f, 1, c]}; %t A191439 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191439 t[i_, j_] := rows[[i, j]]; %t A191439 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] %t A191439 (* A191439 array *) %t A191439 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191439 sequence *) %t A191439 (* Program by _Peter J. C. Moses_, Jun 01 2011 *) %Y A191439 Cf. A114537, A035513, A035506, A191438. %K A191439 nonn,tabl %O A191439 1,2 %A A191439 _Clark Kimberling_, Jun 04 2011