A191440 Dispersion of ([n*sqrt(2)+n+3/2]), where [ ]=floor, by antidiagonals.
1, 3, 2, 8, 6, 4, 20, 15, 11, 5, 49, 37, 28, 13, 7, 119, 90, 69, 32, 18, 9, 288, 218, 168, 78, 44, 23, 10, 696, 527, 407, 189, 107, 57, 25, 12, 1681, 1273, 984, 457, 259, 139, 61, 30, 14, 4059, 3074, 2377, 1104, 626, 337, 148, 73, 35, 16, 9800, 7422, 5740
Offset: 1
Examples
Northwest corner: 1....3....8....20...49 2....6....15...37...90 4....11...28...69...168 5....13...32...78...189 7....18...44...107..259
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; x = Sqr[2]; f[n_] := Floor[n*x+n+3/2] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191440 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191440 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments